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1. Generation of Discrete Time (DT)  signals and  

Operations on DT signals  

EXPT. NO: 1 

DATE: 
 

Aim: 

 To generate Discrete Time (DT) signals and operations on DT signals using MATLAB. 

Equipment Required: 

1. Personal Computer with MATLAB software. 

Theory: 

Generation of Discrete Time signals 

A discrete time signal has a value defined only at discrete points in time and a discrete –
time system operates on and produces discrete time variables. A discrete time signal is a 

sequence which is a function defined on positive and negative integers, that is 

 

    x(n) = { x(n)} = { ….x(-1),x(0),x(1),…..} 

                                                                                 ↑ 

 Where UP arrow represents the sample at n=0. Here ‘n’ is an integer indicating the 

sample numbers as counted from a chosen time origin i.e. n=0. The negative values of ‘n’ 
corresponds to negative time. The function of ‘n’ is referred to as a sequence of samples 

(or) sequences in short. 

 If a continuous time signal x(t) is sample every T seconds, a sequence x(nT) results. 

In general, the sequence values are called samples and the interval between them is called 

sample interval, T. For convenience, the sample interval T is taken as one second and 

hence x(n) represents the sequence. 

The Basic Discrete time sequences are 

1. Unit- Impulse sequence (or) Unit- Sample sequence 

 

 
 

2. Unit-Step sequence 

 
 

     3. Unit-ramp sequence 

 
 



    

 4. Sinusoidal sequence 

                   A discrete sinusoidal signal may be expressed as 

                           x(n) = A cos(wn + θ)  - ∞ < n < ∞ 

 

 

Operations on DT signals 

When we process a sequence, this sequence may undergo several manipulations involving 

the independent variable or the amplitude of the signal. 

The basic operations on sequences are as follows: 

1. Time shifting 

2. Time reversal 

3. Time scaling 

4. Amplitude scaling 

5. Signal addition 

6. Signal multiplication 

The first three operations correspond to transformation in independent variable n of a signal. 

The last three operations correspond to transformation on amplitude of a signal. 

 

(1) Time Shifting 

The time shifting of a signal may result in time delay or time advance. The time 

shifting operation of a discrete-time signal x(n) can be represented by 

y(n) = x(n – k) 

This shows that the signal y(n) can be obtained by time shifting the signal x(n) by k units. If 

k is positive, it is delay and the shift is to the right, and if k is negative, it is advance and the 

shift is to the left. 

(2) Time Reversal 

The time reversal also called time folding of a discrete-time signal x(n) can be 

obtained by folding the sequence about n = 0. The time reversed signal is the reflection of 

the original signal. It is obtained by replacing the independent variable n by –n. 

(3) Time Scaling 

Time scaling may be time expansion or time compression. The time scaling of a 

discrete time signal x(n) can be accomplished by replacing n by an in it. Mathematically, it 

can be expressed as: y(n) = x(an)  

When a > 1, it is time compression and when a < 1, it is time expansion. 

(4) Amplitude Scaling 

The amplitude scaling of a discrete-time signal can be represented by 

y(n) = ax(n) where a is a constant. 

The amplitude of y(n) at any instant is equal to a times the amplitude of x(n) at that instant. 

If a > 1, it is amplification and if a < 1, it is attenuation. Hence the amplitude is rescaled. 

Hence the name amplitude scaling. 

(5) Signal Addition and Subtraction 

In discrete-time domain, the sum of two signals x1(n) and x2(n) can be obtained by 

adding the corresponding sample values and the subtraction of x2(n) from x1(n) can be 

obtained by subtracting each sample of x2(n) from the corresponding sample of x1(n) as 

illustrated below. 



If x1(n) = {1, 2, 3, 1, 5} and x2(n) = {2, 3, 4, 1, –2} 

Then x1(n) + x2(n) = {1 + 2, 2 + 3, 3 + 4, 1 + 1, 5 – 2} = {3, 5, 7, 2, 3} 

and x1(n) – x2(n) = {1 – 2, 2 – 3, 3 – 4, 1 – 1, 5 + 2} = {–1, –1, –1, 0, 7} 

(6) Signal Multiplication 

The multiplication of two discrete-time sequences can be performed by multiplying 

their values at the sampling instants as shown below. 

If x1(n) = {1, –3, 2, 4, 1.5} and x2(n) = {2, –1, 3, 1.5, 2}, Then  

x1(n)-x2(n) is = {1 2, 3 1, 2 3, 4 1.5, 1.5 2} = {2, 3, 6, 6, 3} 

 

Description of basic functions: 

1. Sine of argument in radians and   sin(X) is the sine of the elements of X. 

2. Cosine of argument in radians and cos(X) is the cosine of the elements of X. 

3. rectpuls(T) generates samples of a continuous, aperiodic, unity-height rectangle at the 

points specified in array T, centered about T=0. By default, the rectangle has width 1. 

4. tripuls(T) generates samples of a continuous, aperiodic, unity-height triangle at the 

points specified in array T, centered about T=0.  By default, the triangle is symmetric and 

has width 1. 

5. sawtooth(T) generates a sawtooth wave with period 2*pi for the elements of time vector 

T. sawtooth(T) is like SIN(T), only it creates a sawtooth wave with peaks of +1 to -1 instead 

of a sine wave.  

6. square(T) generates a square wave with period 2*Pi for the elements of time vector T.  

7.  fliplr Flip array in left/right direction. Y = fliplr(X) returns X with the order of elements 

flipped left to right along the second dimension. 

8. xlabel('text') adds text beside the X-axis on the current axis. 

9. ylabel('text') adds text beside the Y-axis on the current axis. 

10. title('text') adds text at the top of the current axis. 

11.Discrete sequence or "stem" plot. stem(Y) plots the data sequence Y as stems from the x 

axis terminated with circles for the data value. 

12. Linear plot. plot(X,Y) plots vector Y versus vector X. If X or Y is a matrix, then the 

vector is plotted versus the rows or columns of the matrix, whichever line up. 

13. subplot Create axes in tiled positions. H = subplot(m,n,p), or subplot(mnp), breaks the 

Figure window into an m-by-n matrix of small axes, selects the p-th axes for the current 

plot, and returns the axes handle.   

 

Procedure: 

1. Open the MATLAB software by double clicking the icon on desktop. 

2. Open the new M-file by using file menu. 

3. Write the program in new file. 

4. Click on save and run the icon. 

5. Perform error check which displayed on command window. 

6. Plot the waveforms displayed on figure window. 

7.  Note down the values, which are displayed on the command window. 

Program : 

% Experiment 1(a) : Generation of Discrete Time Signals 

 clc; 

clear all; 

close all;   

 figure(1) 

 n = -10:1:10; 



% Unit Impulse Sequence 

impulse = [zeros(1,10), ones(1,1), zeros(1,10)]; 

subplot(2,2,1); 

stem(n,impulse); 

xlabel('Discrete time n --->'); 

ylabel('Amplitude--->'); 

title('Unit Impulse Sequence'); 

 

% Unit Step Sequence 

step = [zeros(1,10), ones(1,11)]; 

subplot(2,2,2); 

stem(n,step); 

xlabel('Discrete time n --->'); 

ylabel('Amplitude--->'); 

title('Unit Step Sequence'); 

 

% Unit Ramp Sequence 

n1 = 0:1:10; 

ramp = n1; 

subplot(2,2,3); 

stem(n1,ramp); 

xlabel('Discrete time n --->'); 

ylabel('Amplitude--->'); 

title('Unit Ramp Sequence'); 

 

% Unit Parabolic Sequence 

n1 = 0:1:10; 

parabola = 0.125*(n1.^3);  

subplot(2,2,4); 

stem(n1,parabola); 

xlabel('Discrete time n --->'); 

ylabel('Amplitude--->'); 

title('Unit parabola Sequence'); 

  

% Generation of Discrete time exponential sequence 

figure(2) 

n3 = -10:1:10; 

% for 0 < a < 1 

a  = 0.8; 

x1 = a.^n3; 

subplot(2,2,1); 

stem(n3,x1); 

xlabel('Discrete time n --->'); 

ylabel('Amplitude--->'); 

title('x1(n) for 0 < a < 1 (Decaying Exponential)'); 

 

 

 

 



% for a > 1 

a  = 1.5; 

x2 = a.^n3; 

subplot(2,2,2); 

stem(n3,x2); 

xlabel('Discrete time n --->'); 

ylabel('Amplitude--->'); 

title('x2(n) for a > 1 (Increasing Exponential)'); 

% for -1 < a < 0 

a  = -0.8; 

x3 = a.^n3; 

subplot(2,2,3); 

stem(n3,x3); 

xlabel('Discrete time n --->'); 

ylabel('Amplitude--->'); 

title('x3(n) for -1 < a < 0 (Alternating Decreasing Exponential)'); 

% for a < -1 

a  = -1.5; 

x4 = a.^n3; 

subplot(2,2,4); 

stem(n3,x4); 

xlabel('Discrete time n --->'); 

ylabel('Amplitude--->'); 

title('x3(n) for a<-1 (Alternating Increasing Exponential)'); 

  

x=0:0.1:(4*pi);                  % defining the time instants 

x1=-2*pi:0.1:2*pi;               % defining the time range from –pi to pi 

y=sin(x);                        % obtain the amplitudes of sin signal 

z=cos(x);                        % obtain the amplitudes of cos signal 

k=square(x,50);                  % obtain the square wave 

b=tripuls(x1);                   % obtain the triangular wave 

i=sawtooth(x1);                  % obtain the saw tooth signal 

c=rectpuls(x1);                  % obtain the rectangular signal 

% Generation of Discrete Time Sequences 

figure(3); 

subplot(3,2,1), stem(x,y);  xlabel('Discrete Time--> n'); ylabel('Amplitude--> y(n)');    

title('Sine Wave');   

subplot(3,2,2) ,stem(x,z);  xlabel('Discrete Time--> n');  ylabel('Amplitude--> z(n)');  

 title('Cosine wave');   

subplot(3,2,3) ,stem(x,k);  xlabel('Discrete Time--> n');  ylabel('Amplitude--> k(n)');  

 title('Square Wave');   

subplot(3,2,4) ,stem(x1,b);  xlabel('Discrete Time-->'); ylabel('Amplitude--> b(n)');  

 title('Triangular Wave');   

subplot(3,2,5) ,stem(x1,i);  xlabel('Discrete Time-->');  ylabel('Amplitude--> i(n)');   

title('Sawtooth Wave');   

subplot(3,2,6) ,stem(x1,c);  xlabel('Discrete Time-->'); ylabel('Amplitude--> c(n)');   

title('Rectangular Wave'); 

 

 

 



Output 1(a):  
  

 
 

 
 

 
 

 

 



% Experiment 1(b) : Operation on Discrete Time Sequences 

clc; 

clear all; 

close all; 

n1 = -2:1             % Time instants for first sequence 

x = [1 2 3 4]         % Amplitudes of first sequence 

subplot (3,3,1); 

stem (n1,x); 

title('input signal X'); 

axis([-3  3  0  5]); 

n2 = 0:3;               % Time instants for second sequence 

y = [1 1 1 1];           % Amplitudes of second sequence 

subplot (3,3,2); 

stem (n2,y); 

title('input signal Y'); 

axis([-3  3  0  5]); 

% Time instants for output sequence  

n3 = min(min(n1),min(n2)):max(max(n1),max(n2));    

s1 = zeros(1, length(n3)); 

s2 = s1; 

s1(find((n3>=min(n1))&(n3<=max(n1))==1))=x; 

s2(find((n3>=min(n2))&(n3<=max(n2))==1))=y; 

% Addition of two signals S1 and S2 

A = s1+s2;                 

subplot(3,3,3); 

stem(n3,A); 

title('Addition of both input signals A=X+Y'); 

axis([-3  3  0  5]); 

% Subtraction of two signals S1 and S2 

S = s1-s2; 

subplot(3,3,4); 

stem(n3,S); 

title('subtraction of  signal Y from X , S=X-Y'); 

axis([-4  4  -5  5]); 

% Multiplication of two signals S1 and S2 

M = s1.*s2; 

subplot(3,3,5); 

stem(n3,M); 

title('Multiplication of two signals  M=X*Y'); 

axis([-4  4  -5  5]); 

% Amplitude Scaling by 2 

SC = 2*s1;            

% Time Reversal of a Sequence or Folding 

c = fliplr(x); 

y = fliplr(-n1); 

subplot(3,3,6); 

stem(y,c); 

axis([-3  3 0  5]); 

title('Reversed input signal x(-n)'); 



% Time Shifting of a Sequence or Delay the sequence by 3 Units 

m = n1+3 

p = x 

subplot(3,3,7); 

stem(m,p); 

title('delayed signal x(n-3)'); 

 

% Time Shifting of a Sequence or Advance the sequence by 3 Units 

t = n1-3 

z = x 

subplot(3,3,8); 

stem(t,z); 

title('advanced signal x(n+3)'); 
 

Output (2b):  

 

 

Experimental Observations: 

First Sequence     x =   {1     2     3     4} and time instants {-2, -1, 0, 1} 

Second Sequence y =   {1     1     1     1} and time instants {0, 1, 2, 3 } 

Addition of two signals S1 and S2 

A = { 1     2     4     5     1     1 } 

Subtraction of two signals S1 and S2 

S =  { 1     2     2     3    -1    -1 } 

Multiplication of two signals S1 and S2 

M = { 0     0     3     4     0     0 } 

Amplitude Scaling by 2 

SC = { 2     4     6     8     0     0 } 

Folding or Time Reversal and its time instants 

c =  { 4     3     2     1 } and y = { -1     0     1     2 } 



Time shifting or Delay by 3 Units and its time instants 

m = { 1     2     3     4 } and p = { 1     2     3     4 } 

Time shifting or Advance by 3 Units and its time instants 

t = { -5    -4    -3    -2 } and z = { 1     2     3     4 } 

 

 

Precautions: 

1. Check out source file is with ‘.m’ extension or not. 

2. The file name should begin with character and should not contain any punctuation marks. 

3. File name should not be any in built in function name or any keyword 

4. Save the .m files preferably in work folder of MATLAB. 

5. Don’t delete built in functions and any file or folder without informing the system  

    administrator or lab In-charge. 
  

Viva -Voce Questions: 
 

1. What are the different types of representations of discrete time signal? 

2. How discrete time signals are differed from continuous time signals? 

3. Describe the basic discrete time signals along with their expressions? 

4. What are the basic operations used on discrete time signals? 

5. How discrete time signal differed from a digital signal? 

6. What is meant by Time Scaling? 

7. Describe the Time Scaling operation along with the expressions? 

8. Describe the Folding operation along with the expressions? 

9. Explain Addition, Subtraction and Multiplication operations used on discrete time signals?  

10. How addition of two signals operation is carried out, if two signals are not having the  

      same length? 
 

Result: 

 The basic discrete time signals were generated and operations on discrete time signals were 

verified using MATLAB. 



2 Linear Convolution   
EXPT. NO: 2 

DATE: 
 

Aim: 

To verify the linear convolution between input sequence x(n) and impulse sequence 

h(n) for a given discrete LTI system using MATLAB. 

 Equipment Required: 

1. Personal Computer with MATLAB software. 

Theory:  

Linear Convolution 

 Convolution is an important operation in DSP, because convolving two sequences in 

time domain is equivalent to multiplying the sequences in frequency domain. Convolution 

mainly used in processing signals especially analysing the output of a system.   Convolution 

of two signals  x(n) and h(n) is given as 

 
In practice, we often deal with sequences of finite length, and their convolution may be 

found by several methods. The convolution y(n) of two finite-length sequences x(n) and 

h(n) is also of finite length and is subject to the following rules, which serve as useful 

consistency  

checks: 

1. The starting index of y(n) equals the sum of the starting indices of x(n) and h(n). 

2. The ending index of y(n) equals the sum of the ending indices of x(n) and h(n). 

3. The length N of y(n) is related to the lengths N1 and Lh of x(n) and h(n) by 

N2 = N1+N2 – 1. 

The various steps involved in finding out convolution sum are 

Step 1: Choose the starting time n for evaluating the output sequence y(n). If x(n) starts at 

n = n1 and h(n) starts at n = n2, then n = n1 + n2 is a good choice. 

Step 2: Express both the sequences x(n) and h(n) in terms of the index k. 

Step 3: Fold h(k) about k = 0 to obtain h(– k) and shift by n to the right if n is positive and 

to the left if n is negative to obtain h(n – k). 

Step 4: Multiply the two sequences x(k) and h(n – k) element by element and sum the 

products to get y(n). 

Step 5: Increment the index n, shift the sequence h(n – k) to the right by one sample and 

perform Step 4. 

Step 6: Repeat Step 5 until the sum of products is zero for all remaining values of n. 



Description of basic functions: 

1. C = conv(A, B) convolves vectors A and B.  The resulting vector is 

    length MAX([LENGTH(A)+LENGTH(B)-1,LENGTH(A),LENGTH(B)]). If A and B are 

    vectors of polynomial coefficients, convolving them is equivalent to 

    multiplying the two polynomials. 

2. disp(X) displays the array, without printing the array name 

3. xlabel('text') adds text beside the X-axis on the current axis. 

4. ylabel('text') adds text beside the Y-axis on the current axis. 

5. title('text') adds text at the top of the current axis. 

6. Discrete sequence or "stem" plot. stem(Y) plots the data sequence Y as stems from the x 

axis terminated with circles for the data value. 

7. subplot Create axes in tiled positions. H = subplot(m,n,p), or subplot(mnp), breaks the 

Figure window into an m-by-n matrix of small axes, selects the p-th axes for the current 

plot, and returns the axes handle.  

Procedure: 

1. Open the MATLAB software by double clicking the icon on desktop. 

2. Open the new M-file by using file menu. 

3. Write the program in new file. 

4. Click on save and run the icon. 

5. Perform error check which displayed on command window. 

6. Plot the waveforms displayed on figure window. 

7.  Note down the values, which are displayed on the command window. 

Program: 

% Experiment 2: Linear Convolution 

clc; 

clear all; 

close all; 

  

% Define the Input Sequence x(n) 

x = input(‘enter the input sequence x(n)’); 
subplot(3,1,1); 

stem(x); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('First Sequence x(n)'); 

  

% Define the Impulse Sequence h(n) 

x = input(‘enter the impulse sequence h(n)’); 
subplot(3,1,2); 

stem(h); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('Second Sequence h(n)'); 

  

 

 

 

 

 

 



 

% Convolution between x(n) and h(n) 

y = conv(x,h); 

subplot(3,1,3); 

stem(y); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('Convolution between x(n) and h(n)'); 

  

disp('Input Sequence is x(n) is'); 

disp(x); 

disp('Impulse Sequence is h(n) is'); 

disp(h); 

disp('Convolution between x(n) and h(n) is'); 

disp(y); 

 

Output 2:  

 

 

 
 

Experimental Observations for 3(a): 

 

First Sequence is x(n) is  :        1     2    -1 

Second Sequence is h(n) is :     1     2    -1 

Convolution between x(n) and h(n) is  :      1     4     2    -4     1 

 

 

 



 

Precautions: 

1. Check out source file is with ‘.m’ extension or not. 

2. The file name should begin with character and should not contain any punctuation marks. 

3. File name should not be any in built in function name or any keyword 

4. Save the .m files preferably in work folder of MATLAB. 

5. Don’t delete built in functions and any file or folder without informing the system  

    administrator or lab In-charge. 
  

 

Viva -Voce Questions: 
 

1. What is convolution? 

2. What are the applications of convolution? 

3. Which command is used to find convolution between two sequences? 

4. What are the various steps involved in finding out convolution? 

5. What are the properties of Twiddle factor? 

6. Explain DFT and IDFT with their expressions? 

7. What is a command are used to perform DFT and IDFT? 

8. How linear convolution operation is carried out through DFT and IDFT? 

 

Result: 

 Linear convolution response of discrete LTI system with input sequence x(n) and           

impulse response h(n) was verified using MATLAB. 

 

 

 

 



3. Circular Convolution   
EXPT. NO: 3 

DATE: 
 

Aim: 

 To verify the circular convolution between two sequences x1(n) and x2(n) using MATLAB. 

Equipment Required: 

1. Personal Computer with MATLAB software. 

Theory  

Circular Convolution 

 The circular convolution of two sequences requires that at least one of the two sequences 

should be periodic. If both the sequences are non-periodic, then periodically extend one 

of the sequences and then perform circular convolution. 

 The circular convolution can be performed only if both the sequences consists of the 

 same number of samples. If the sequences have different number of samples, then 

convert the smaller size sequence to the size of larger size sequence by appending zeros. 

The circular convolution produces a sequence whose length is same as that of input 

sequences. 

 Circular convolution basically involves the same four steps as linear convolution 

     namely folding one sequence, shifting the folded sequence, multiplying the two 

sequences and finally summing the value of the product sequences. 

 The difference between the two is that in circular convolution the folding and shifting 

(rotating) operations are performed in a circular fashion by computing the index of one of 

the sequences by modulo-N operation.  

 In circular convolution, any one of the sequence is folded and rotated without changing 

the result of circular convolution 

Concentric Circle Method 

Let x1(n) and x2(n) be two given sequences.  

The steps followed for circular convolution of x1(n) and x2(n) are 

 Take two concentric circles. Plot N samples of x1(n) on the circumference of the outer 

circle (maintaining equal distance successive points) in anti-clockwise direction. 

 For plotting x2(n), plot N samples of x2(n) in clockwise direction on the inner circle, 

starting sample placed at the same point as 0
th

sample of x1(n). 

 Multiply corresponding samples on the two circles and add them to get output. 

 Rotate the inner circle anti-clockwise with one sample at a time. 

                                          
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Example Find the circular convolution of two finite duration sequences:  

x1(n) = {1, 2, –1, –2, 3, 1}, x2(n) = {3, 2, 1} 

Solution: 

 Let x3(n) be the circular convolution of x1(n) and x2(n).  

 To find the circular convolution, both sequences must be of same length.  

 Here x1(n) is of length 6 and x2(n) is of length 3. Therefore, we append three zeros to the 

sequence x2(n) and use concentric circle method to find circular convolution.  

 So we have x1(n) = {1, 2, –1, –2, 3, 1}, x2(n) = {3, 2, 1, 0, 0, 0} 

From Figure x3 (0) = (1)(3) + (2) (0) + (-1)(0) + (2)(0) + (3) (1) + (1) (2) = 8 

From Figure x3(1) = (1)(2) + (2)(3) + (–1)(0) + (–2)(0) + (3)(0) + (1)(1) = 9 

From Figure x3(2) = (1)(1) + (2)(2) + (–1)(3) + (–2)(0) + (3)(0) + (1)(0) = 2 

From Figure x3(3) = (1)(0) + (2)(1) + (–1)(2) + (–2)(3) + (3)(0) + (1)(0) = –6 

From Figure x3(4) = (1)(0) + (2)(0) + (–1)(1) + (–2)(2) + (3)(3) + (1)(0) = 4 

From Figure x3(5) = (1)(0) + (2)(0) + (–1)(0) + (–2)(1) + (3)(2) + (1)(3) = 7 

Therefore, the circular convolution of x1(n) and x2(n) is: x3 (n) = {8, 9, 2, -6, 4, 7} 



 

 
Description of basic functions: 

1. disp(X) displays the array, without printing the array name 

2. xlabel('text') adds text beside the X-axis on the current axis. 

3. ylabel('text') adds text beside the Y-axis on the current axis. 

4. title('text') adds text at the top of the current axis. 

5.Discrete sequence or "stem" plot. stem(Y) plots the data sequence Y as stems from the x 

axis terminated with circles for the data value. 

6. subplot Create axes in tiled positions. H = subplot(m,n,p), or subplot(mnp), breaks the 

Figure window into an m-by-n matrix of small axes, selects the p-th axes for the current 

plot, and returns the axes handle.  

7. The general form of a for statement is  

                        for variable = expr, statement, ..., statement END  

9. if Conditionally execute statements.  The general form of the if statement is 

        if expression 

         statements 

       ELSEIF expression 

         statements 

       ELSE 

         statements 

       END 

Procedure: 

1. Open the MATLAB software by double clicking the icon on desktop. 

2. Open the new M-file by using file menu. 

3. Write the program in new file. 

4. Click on save and run the icon. 

5. Perform error check which displayed on command window. 

6. Plot the waveforms displayed on figure window. 

7.  Note down the values, which are displayed on the command window. 



Program: 

% Experiment 3 : Circular Convolution 

clc;  

clear all;  

close all; 

  

% Define the First Sequence x1(n) 

x1 = [1 2 -1 -2 3 1]; 

N1 = length(x1); 

subplot(3,1,1); 

stem(x1); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('First Sequence x1(n)'); 

  

% Define the Second Sequence x2(n) 

x2 = [3 2 1]; 

N2 = length(x2); 

subplot(3,1,2); 

stem(x2); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('Second Sequence x2(n)'); 

  

% Output Sequence length  

N=max(N1,N2); 

  

% Zero padding for two sequences 

x1=[x1 zeros(1,N-N1)]; 

x2=[x2 zeros(1,N-N2)]; 

  

 % Logic for Circular Convolution 

for m=1:N 

y(m)=0; 

for n=1:N 

i=m-n+1; 

if(i<=0) 

i=N+i; 

end 

y(m)=y(m)+x1(n)*x2(i); 

end 

end 

  

subplot(3,1,3); 

stem(y); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('Circular Convolution between x1(n) and x2(n)'); 

  

disp('First Sequence x1(n) is ');            

disp(x1);                    

disp('Second Sequence x2(n) is ');       

disp(x2);                    

disp('Circular Convolution between x1(n) and x2(n)is ');         

disp(y);         

 



Output 3:  

 

 
 

Experimental Observations for 3: 

 

First Sequence x1(n) is :      1     2    -1    -2     3     1 

Second Sequence x2(n) is :  3     2     1     0     0     0 

Circular Convolution between x1(n) and x2(n) is :  8     9     2    -6     4     7 

 

Precautions: 

1. Check out source file is with ‘.m’ extension or not. 

2. The file name should begin with character and should not contain any punctuation marks. 

3. File name should not be any in built in function name or any keyword 

4. Save the .m files preferably in work folder of MATLAB. 

5. Don’t delete built in functions and any file or folder without informing the system  

    administrator or lab In-charge. 

 Viva -Voce Questions: 
 

1. What is the need of circular convolution? 

2. What are the basic operations involved in circular convolution? 

3. What are the differences between linear and circular convolution? 

4. What is meant by padding with zeros? 

5. List the methods used for circular convolution 

 

. 

 

Result: 

 Circular convolution between x1(n) and x2(n) using MATLAB was verified. 

 



4. Computation of  DFT and IDFT 
EXPT. NO: 4 

DATE: 
 

Aim: 

To compute Discrete Fourier Transform and Inverse Discrete Fourier Transform for  
given N-point sequence.  

Equipment Required: 

1. Personal Computer with MATLAB software. 

Theory: 
 

The DTFT of a sequence is periodic and continuous in frequency in the rage from o 
to 2π. There are infinitely many ω in this range. If we use a digital computer to compute N 
equally spaced points over the interval 0 ≤ ω ≤ 2π, then the N-points should be located at  
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These N equally spaced frequency samples of the DTFT are known as DFT of 
sequence and it is denoted by X(k) is 
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Let x(n) is a causal, finite duration sequence containing L samples, then its Fourier 
transform is given by  
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Since time domain aliasing occurs if N ≤  L, we increase the duration of sequence 
x(n) from L to N samples by appending appropriate zeros, which is known as zero padding. 

Since zero valued elements contribute nothing to sum, hence the above equation can 

be written as    10)()(
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 which is called N-point DFT of 

sequence x(n). 
Since xp(n) is periodic extension of x(n) with period N, it can be expressed in Fourier 

series expansion  10)(
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 is called N –point IDFT. 

Example: Find the DFT of the sequence x(n) = {1, -1, 2 -2} 
Solution:  Given sequence is x(n) = {1, –1, 2, –2}. Here the DFT X(k) to be found is  
N = 4-point and length of the sequence L = 4. So no padding of zeros is required. 

The N – Point DFT is given by  10)()(
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Description of basic functions: 

1. disp(X) displays the array, without printing the array name 

2. xlabel('text') adds text beside the X-axis on the current axis. 

3. ylabel('text') adds text beside the Y-axis on the current axis. 

4. title('text') adds text at the top of the current axis. 

5.Discrete sequence or "stem" plot. stem(Y) plots the data sequence Y as stems from the x 

axis terminated with circles for the data value. 

6. subplot Create axes in tiled positions. H = subplot(m,n,p), or subplot(mnp), breaks the 

Figure window into an m-by-n matrix of small axes, selects the p-th axes for the current 

plot, and returns the axes handle.  

7. The general form of a for statement is  

                        for variable = expr, statement, ..., statement END  

8. sqrt(X) is the square root of the elements of X 

9. abs(X) is the absolute value of the elements of X 

10. angle(H) returns the phase angles, in radians, of a matrix with complex elements.    

Procedure: 

1. Open the MATLAB software by double clicking the icon on desktop. 

2. Open the new M-file by using file menu. 

3. Write the program in new file. 

4. Click on save and run the icon. 

5. Perform error check which displayed on command window. 

6. Plot the waveforms displayed on figure window. 

7.  Note down the values, which are displayed on the command window. 

Program: 

% Experiment 4: Computation of DFT and IDFT 

clc; 
close all;  
clear all; 
 
% Define the input sequence x(n)and its length N 
xn=input('Enter the sequence x(n)');              
N=length(xn);                                   
 
% Initialize an array of same size as that of input sequence 
Xk=zeros(1,N);  
  
% Initialize an array of same size as that of input sequence 
ixk=zeros(1,N);                                  
  



 

% This code block is describes, to find the DFT of the sequence X(k) 
i=sqrt(-1); 
  
for k=0:N-1 
    for n=0:N-1 
        Xk(k+1)=Xk(k+1)+(xn(n+1)*exp((-i)*2*pi*k*n/N));  
    end 
end 
 
% Plot the input sequence x(n) 
n=0:N-1; 
subplot(2,2,1); 
stem(n,xn); 
xlabel ('Discrete Time Index -->n'); 
ylabel ('Amplitude'); 
title('Input Sequence x(n)'); 
  
%Magnitudes of individual DFT points 

Magnitude = abs(Xk);             
t=0:N-1; 
subplot(2,2,2); 
stem(n,Magnitude); 
xlabel ('Discrete Frequency Index -->K'); 
ylabel ('Amplitude'); 
title('Magnitude Response |X(k)|'); 
  
% Phases of individual DFT points 
Phase = angle(Xk);               
n=0:N-1; 
subplot(2,2,3); 
stem(n,Phase); 
xlabel ('Discrete Frequency Index -->K'); 
ylabel ('Phase'); 
title('Phase Response angle(X(k))'); 
  
% This code block is describes, to find the IDFT of the sequence 

for n=0:N-1 
    for k=0:N-1 
        ixk(n+1)=ixk(n+1)+(Xk(k+1)*exp(i*2*pi*k*n/N)); 
    end 
end 
ixk=ixk ./ N 
 
% Plot the Result of Inverse DFT sequence 
n=0:N-1; 
subplot(224); 
stem(n,ixk); 
xlabel ('Discrete Time Index -->n'); 
ylabel ('Amplitude'); 
title('IDFT of the sequence x(n)');  
 

 

 

 



 

 

 

Experimental Observations 

Input Sequence x(n) is  :       1    -1     2    -2 

DFT of sequence x(n) is  :  

Xk =  0.0000 + 0.0000i  -1.0000 - 1.0000i   6.0000 + 0.0000i  -1.0000 + 1.0000i 

Magnitude Response of DFT of X(k)is  :  0    1.4142    6.0000    1.4142 

Phase Response of DFT of X(k)is          :   0   -2.3562    0.0000    2.3562 

IDFT of Sequence X(K) is x(n)              :   1.0000   -1.0000    2.0000   -2.0000 

Output 

 

Precautions: 

1. Check out source file is with ‘.m’ extension or not. 
2. The file name should begin with character and should not contain any punctuation marks. 
3. File name should not be any in built in function name or any keyword 
4. Save the .m files preferably in work folder of MATLAB. 
5. Don’t delete built in functions and any file or folder without informing the system  
    administrator or lab In-charge. 
  

Viva -Voce Questions: 
 

1. Write the expressions for N –Point DFT and IDFT. 

2. What are different commands available in MATLAB for the computation of DFT? 

3. Differentiate between DTFT and DFT.  

4. What are the advantages to use DFT in computers rather than DTFT? 

5. State any two DFT properties. 

 
Result: The N-Point DFT and IDFT of the given sequence were obtained using MATLAB. 

 



Linear and Circular Convolution using DFT and IDFT 
EXPT. NO: 5 

DATE: 
 

Aim: 

 To verify the Linear Convolution and Circular Convolution through DFT and IDFT using 

MATLAB.  

Equipment Required: 

1. Personal Computer with MATLAB software. 

Theory: 

Linear Convolution and Circular Convolution through DFT and IDFT approach: 

 Convolution is an important operation in DSP, because convolving two sequences in 

time domain is equivalent to multiplying the sequences in frequency domain. Convolution 

mainly used in processing signals especially analysing the output of a system.   Convolution 

of two signals  x(n) and h(n) is given as 

 
An interesting property of the Discrete Fourier Transforms is the effect it has on 

convolution. Convolution of two signals in the time domain translates to a multiplication 

of their Fourier transforms in the frequency domain. 

Where DFT and IDFT is defined by 

Steps involved in Linear Convolution through DFT and IDFT approach: 

1. Zero pad x[n] to N ≥ N1+N2-1 elements. 

2. Zero pad h[n] to N ≥ N1+N2-1 elements. 

3. Compute N-Point DFT X[k] of x(n). 

4. Compute N-Point DFT H[k] of h(n). 

5. Multiply Y[k] = X[k]H[k], k = 0,1,2,….N-1 

6. Compute N-Point Inverse DFT of Y[k] to get linear convolution between x(n) and h(n) 

Steps involved in Circular Convolution using DFT and IDFT aproach 

1. Zero pad x1[n] to N ≥ Max(N1,N2) elements. 

2. Zero pad x2[n] to N ≥ Max(N1,N2) elements. 

3. Compute N-Point DFT X1[k] of x1(n).  

4. Compute N-Point DFT X2[k] of x2(n). 

5. Multiply X3[k] = X1[k]X2[k], k = 0,1,2,….N-1 

6. Compute N-Point Inverse DFT of X3[k] to get circular convolution between x1(n) and   

    x2(n) 

 

Procedure: 

1. Open the MATLAB software by double clicking the icon on desktop. 

2. Open the new M-file by using file menu. 

3. Write the program in new file. 

4. Click on save and run the icon. 

5. Perform error check which displayed on command window. 

6. Plot the waveforms displayed on figure window. 

7.  Note down the values, which are displayed on the command window. 

 

 

 



Program: 
 

% Experiment 5(a): Linear Convolution using DFT and IDFT 

clc; 

clear all; 

close all; 

% Define the First Sequence x1(n) 

% x1 = [1 2 -1] 

x1 = input('Enter the First Sequence x1(n)'); 

N1 = length(x1); 

subplot(3,2,1); 

stem(x1); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('First Sequence x1(n)'); 

  

% Define the Second Sequence x2(n) 

% x2 = [1 2 -1] 

x2 = input('Enter the Second Sequence x2(n)'); 

N2 = length(x2); 

subplot(3,2,2); 

stem(x2); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('Second Sequence x2(n)'); 
  

% Output Sequence length 

N = N1 + N2 - 1; 
  

% Zero Padding for increasing two sequences up to length N 

x3=[x1  zeros(1,N-N1)]; 

x4=[x2  zeros(1,N-N2)]; 

subplot(3,2,3); 

stem(x3); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('First Sequence after zero padding x3(n)'); 

subplot(3,2,4); 

stem(x4); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('Second Sequence after zero padding x4(n)'); 
  

% Calculating the Frequency domains of x3(n) and x4(n) using DFT 

X3 = fft(x3,N); 

X4 = fft(x4,N); 
  

% According to convolution theorem x3(n)*x4(n) <---> X3(k).X4(k)  

Y=X3.*X4; 
  

 

 



% Linear Convolution between x1(n) and x2(n) using IDFT  

y=ifft(Y,N); 

subplot(3,1,3); 

stem(y); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('Linear Convolution between x1(n) and x2(n) using DFT and IDFT'); 
  

disp('First Sequence x1(n) is '); 

disp(x1); 

disp('Second Sequence x2(n) is '); 

disp(x2); 
  

disp('First Sequence after zero padding x3(n) is '); 

disp(x3); 

disp('Second Sequence after zero padding x4(n) is '); 

disp(x4); 

  

disp('DFT of x3(n) is '); 

disp(X3); 

disp('DFT of x4(n) is '); 

disp(X4); 

  

disp('Multiplication of X3(k) and X4(k) is '); 

disp(Y); 

disp('Linear Convolution between x1(n) and x2(n) using DFT and IDFT is'); 

disp(y); 

 

Output for Linear Convolution using DFT and IDFT 5(a):  

 

 

 

 

 



Experimental Observations 5(a): 

Enter the First Sequence x1(n)     [1 2 -1] 

Enter the Second Sequence x2(n) [1 2 -1] 

First Sequence x1(n) is  :         1     2    -1 

Second Sequence x2(n) is :      1     2    -1 

First Sequence after zero padding x3(n) is :      1     2    -1     0     0 

Second Sequence after zero padding x4(n) is :   1     2    -1     0     0 

DFT of x3(n) is  

   2.0000,  2.4271 - 1.3143i , -0.9271 - 2.1266i,   -0.9271 + 2.1266i,   2.4271 + 1.3143i  

DFT of x4(n) is  

  2.0000, 2.4271 - 1.3143i,  -0.9271 - 2.1266i,  -0.9271 + 2.1266i,   2.4271 + 1.3143i 

Multiplication of X3(k) and X4(k) is  

  4.0000, 4.1631 - 6.3799i,  -3.6631 + 3.9430i,  -3.6631 - 3.9430i,   4.1631 + 6.3799i 

Linear Convolution between x1(n) and x2(n) using DFT and IDFT is 

    1.0000    4.0000    2.0000   -4.0000    1.0000 

Program: 

 

% Experiment 5(b): Circular Convolution using DFT and IDFT 

clc; 

clear all; 

close all; 

 

% Define the First Sequence x1(n) 

% x1 = [1 2 1 2];  

x1 = input('Enter the First Sequence x1(n)'); 

N1 = length(x1); 

subplot(3,2,1); 

stem(x1); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('First Sequence x1(n)'); 

  

% Define the Second Sequence x2(n) 

% x2 = [4 3 2 1] 

x2 = input('Enter the Second Sequence x2(n)'); 

N2 = length(x2); 

subplot(3,2,2); 

stem(x2); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('Second Sequence x2(n)'); 

  



% Output Sequence length 

N = max(N1,N2); 

  

% Zero Padding for increasing two sequences up to length N 

x3=[x1  zeros(1,N-N1)]; 

x4=[x2  zeros(1,N-N2)]; 

subplot(3,2,3); 

stem(x3); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('First Sequence after zero padding x3(n)'); 

subplot(3,2,4); 

stem(x4); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('Second Sequence after zero padding x4(n)'); 

  

%Calculating the Frequency domains of x3(n) and x4(n) 

X3 = fft(x3,N); 

X4 = fft(x4,N); 

  

% According to convolution theorem x3(n)*x4(n) <---> X3(k).X4(k)  

Y=X3.*X4; 

  

% Circular Convolution between x1(n) and x2(n) using DFT and IDFT  

y=ifft(Y,N); 

subplot(3,1,3); 

stem(y); 

xlabel('Discrete time-->'); 

ylabel('Amplitude-->'); 

title('Circular Convolution between x1(n) and x2(n) using DFT and IDFT'); 

  

disp('First Sequence x1(n) is '); 

disp(x1); 

disp('Second Sequence x2(n) is '); 

disp(x2); 

  

disp('First Sequence after zero padding x3(n) is '); 

disp(x3); 

disp('Second Sequence after zero padding x4(n) is '); 

disp(x4); 

  

disp('DFT of x3(n) is '); 

disp(X3); 

disp('DFT of x4(n) is '); 

disp(X4); 

  

disp('Multiplication of X3(k) and X4(k) is '); 

disp(Y); 

disp('Circular Convolution between x1(n) and x2(n) using DFT and IDFT is'); 

disp(y); 

 

 

 

 



Output 5(b):  

 

Experimental Observations 5(b) 

Enter the First Sequence x1(n)     [1 2 1 2] 

Enter the Second Sequence x2(n) [4 3 2 1] 

First Sequence x1(n) is      :     1     2     1     2 

Second Sequence x2(n) is :      4     3     2     1 

First Sequence after zero padding x3(n) is     :     1     2     1     2 

Second Sequence after zero padding x4(n) is :     4     3     2     1 

DFT of x3(n) is     :     6     0    -2     0 

DFT of x4(n) is     :     10.0000,   2.0000 - 2.0000i,    2.0000,   2.0000 + 2.0000i 

Multiplication of X3(k) and X4(k) is   :     60     0    -4     0 

Circular Convolution between x1(n) and x2(n) using DFT and IDFT is  :   14    16    14    16 

Precautions: 

1. Check out source file is with ‘.m’ extension or not. 

2. The file name should begin with character and should not contain any punctuation marks. 

3. File name should not be any in built in function name or any keyword 

4. Save the .m files preferably in work folder of MATLAB. 

5. Don’t delete built in functions and any file or folder without informing the system  

    administrator or lab In-charge. 
  

Result: 

Linear convolution and Circular convolution through DFT and IDFT was verified.  



Power Spectral Density for Sinusoidal Signal 
EXPT. NO: 6 

DATE: 
 

Aim: 

To compute power spectral density (PSD) for sinusoidal signal using MATLAB.  

Equipment Required: 

Personal Computer with MATLAB software. 

Theory: 
 

Power spectral density function (PSD) shows the strength of the variations (energy) 

as a function of frequency. In other words, it shows at which frequencies variations are 

strong and at which frequencies variations are weak. The unit of PSD is energy (variance) 

per frequency (width) and you can obtain energy within a specific frequency range by 

integrating PSD within that frequency range. 

Power Spectral Density (PSD) is the frequency response of a random or periodic 

signal. It tells us where the average power is distributed as a function of frequency. The PSD 

is deterministic, and for certain types of random signals is independent of time. This is 

useful because the Fourier transform of a random time signal is itself random, and therefore 

of little use calculating transfer relationships (i.e., finding the output of a filter when the 

input is random).The PSD of a random time signal x(t) can be expressed in one of two ways 

that are equivalent to each other. 

The PSD is the average of the Fourier transform magnitude squared, over a large time 

interval 
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The PSD is the Fourier transform of the auto-correlation function. 
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The power can be calculated from a random signal over a given band of frequencies as 

follows: 

 1. Total Power in x(t):  
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The signal has to be stationary, which means that us statistics do not change as a function of 

time. 

  

 

 

 

 

 

 

 



Procedure: 

1. Open the MATLAB software by double clicking the icon on desktop. 

2. Open the new M-file by using file menu. 

3. Write the program in new file. 

4. Click on save and run the icon. 

5. Perform error check which displayed on command window. 

6. Plot the waveforms displayed on figure window. 

7.  Note down the values, which are displayed on the command window. 

Program: 

% Experiment 6: Power Spectral Density 

clc; 

clear all; 

close all; 

% Define the Sampling Frequency 

Fs = 1000; 

% Define the Time instants of x(t) 

t =  0:1/Fs:1-1/Fs; 

% Define the CT signal x(t) 

x = cos(2*pi*200*t) % + cos(2*pi*150*t); 

% Plot the input signal x(t) 

subplot(2,1,1); 

plot(x); 

grid on 

xlabel('Continuous Time (Hz)'); 

ylabel('Amplitude'); 

title('Continuous Time Signal x(t)'); 

 % Computation of Power Spectral Density of x(t) 

N = length(x); 

xdft = fft(x); 

xdft = xdft(1:N/2+1); 

psdx = (1/(Fs*N)) * abs(xdft).^2; 

psdx(2:end-1) = 2*psdx(2:end-1); 

  

% Plot the PSD  

freq = 0:Fs/length(x):Fs/2; 

subplot(2,1,2); 

plot(freq,10*log10(psdx)); 

grid on 

xlabel('Frequency (Hz)'); 

ylabel('Power/Frequency (dB/Hz)'); 

title('Power spectral density'); 

 

 

 

 

 



Output 

 

Precautions: 

1. Check out source file is with ‘.m’ extension or not. 

2. The file name should begin with character and should not contain any punctuation marks. 

3. File name should not be any in built in function name or any keyword 

4. Save the .m files preferably in work folder of MATLAB. 

5. Don’t delete built in functions and any file or folder without informing the system  

    administrator or lab In-charge. 

  

 

Result:  

Power Spectral Density for a given sinusoidal signal was computed using MATLAB. 

. 

 



Design of Digital IIR Butterworth filter using  

Bi-linear Transformation. 

EXPT. NO: 7 

DATE: 
 

Aim: 

To design the Digital IIR Low Pass Filters using bilinear transformation technique for a given 

specification using Butterworth approximation.  

Equipment Required: 

Personal Computer with MATLAB software. 

Theory: 

     IIR filters are of recursive type, where the present output samples depends on the present 

input, past input samples and output samples. 

The IIR digital filters have the transfer function of the form  
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Designing Procedure for IIR Low Pass filter using Butterworth Approximation and Bi-linear 

Transformation 

For a given Digital filter specifications SPSP  ,,,       

P  = Pass Band Frequency 

S = Stop Band Frequency     

P = Pass Band Ripple 

S
 = Stop Band Ripple 

  Convert the Digital frequencies into analog frequencies by using Bilinear transformation 
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 Convert the all frequencies into radians per seconds using  
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 The order of the filter is determined by using 
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 The Cut-off frequency  C  is given by  
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 The Poles of the Butterworth filter is given by 
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The poles of the Filter are given by KK SSP   

(OR) 

 The Normalized Denominator polynomials are given by for various values of N 

 

N D(s) = Denominator Polynomial of H(s) 

1 S+1 

2 122  SS  

3   11 2  SSS  

4   18477.1176537.0 22  SSSS  

5    161803.1161803.01 22  SSSSS  

6    151764.0121931855.1 222  SSSSSS    

 

 Determine the transfer function of Analog low pass Butterworth filter   
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(OR) 

Case (i): if N = Even  
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Case (i): if N = Odd  
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 Determine the transfer function H(z) from Analog low pass Butterworth filter transfer 

function H(s) using  
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Description of basic functions: 

1.[N, Wn] = buttord(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital Butterworth 

filter which has a pass band ripple of no more than Rp dB and a stop band attenuation of at least Rs 

dB. Wp and Ws are the pass band and stop band edge frequencies, normalized from 0 to 1 (where 

1 corresponds to pi radians/sample) and [N, Wn] = buttord(Wp, Ws, Rp, Rs, 's') does the 

computation for an analog filter, in which case Wp and Ws are in radians/second. 

 

2. butter Butterworth digital and analog filter design [B,A] = butter(N,Wn) designs an Nth order 

low pass digital Butterworth filter and returns the filter coefficients in length N+1 vectors B 

(numerator) and A (denominator). The coefficients are listed in descending powers of z. The cutoff 

frequency Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding to 

half the sample rate. 



 

    [B,A] = butter(N,Wn,'high') designs a high pass filter. 

    [B,A] = butter(N,Wn,'low') designs a low pass filter. 

    [B,A] = butter(N,Wn,'bandpass') is a band stop filter if Wn = [W1 W2]. 

    [B,A] = butter(N,Wn,'stop') is a band stop filter if Wn = [W1 W2]. 

3. bilinear Bilinear transformation with optional frequency prewarping  

[NUMd, DENd] = bilinear(NUM,DEN,Fs), where NUM and DEN are row vectors containing 

numerator and denominator transfer function coefficients, NUM(s)/DEN(s), in descending powers 

of s, transforms to z-transform coefficients NUMd(z)/DENd(z) 

4. freqz Frequency response of digital filter 

    [H,W] = freqz(B,A,N) returns the N-point complex frequency response 

    vector H and the N-point frequency vector W in radians/sample of 

    the filter and given numerator and denominator coefficients in vectors B and A.  

 

Procedure: 

1. Open the MATLAB software by double clicking the icon on desktop. 

2. Open the new M-file by using file menu. 

3. Write the program in new file. 

4. Click on save and run the icon. 

5. Perform error check which displayed on command window. 

6. Plot the waveforms displayed on figure window. 

7.  Note down the values, which are displayed on the command window. 

 

Program: 

% Experiment 7: Design of Digital IIR Low Pass filter using Butterworth Approximation 

and Bi-linear Transformation 

%% Design of Digital IIR filter using Bilinear Transformation %%  

clc;  

clear all;  

close all;  
 

%% Read the Digital Filter Specifications %% 

disp('Enter the IIR Digital Filter Design Specifications'); 

Ap = input('Enter the Pass Band Attenuation in dB'); 

As = input('Enter the Stop Band Attenuation in dB'); 

wp = input('Enter the Pass Band Edge (Digital) Frequency in Hz'); 

ws = input('Enter the Stop Band Edge (Digital) Frequency in Hz'); 

fs = input('Enter the Sampling Frequency in Hz'); 
 

 

%% Conversion of Digital Specifications into radians per second %%  
 

wp1 = 2*wp/fs  % Pass Band Frequency in terms of radians per second 

ws2 = 2*ws/fs  % Stop Band Frequency in terms of radians per second 
 

%% Conversion of Digital Specifications into Analog Specifications using Bilinear 

Transformation %%  

w1 = 2*fs*tan(wp1/2) 

w2 = 2*fs*tan(ws2/2) 
 

 

 

 

 



%% Compute the Order, Cutoff frequency and Analog filter coefficients using Butterworth 

Approximation %% 

[N,W] = buttord(w1,w2,Ap,As,'s') 
 

c = input('Enter the Choice of Analog Filter 1. LPF 2. HPF 3.BPF 4.BSF \n '); 

%% Determine the Filter Coefficients %% 

if(c==1) 

disp('Frequency Response of  IIR LPF is:'); 

[nums,dens]=butter(N,W,'low','s') 

end 

if(c==2) 

disp('Frequency Response of  IIR HPF is:'); 

[nums,dens]=butter(N,W,'high','s') 

end 

if(c==3) 

    disp('Frequency Response of  IIR BPF is:'); 

[nums,dens]=butter(N,[w1,w2],'bandpass','s') 

end 

if(c==4) 

    disp('Frequency Response of  IIR BSF is:'); 

[nums,dens]=butter(N,[w1,w2],'stop','s') 

end 

 

%% Analog IIR filter transfer function (H(s)) converted to Digital IIR Filter transfer 

function (H(z)) using Bilinear Transformation %% 

 

[numd  dend]=bilinear(nums, dens, fs); 

 

%% Obtaining the Magnitude and Phase Response of filter %% 

w = 0:0.1:pi; 

[h,om] = freqz(numd,dend,w); 

 

%% Obtaining the Magnitude Response of filter %% 

m=20*log10(abs(h)); 

%% Obtaining the Phase Response of filter %% 

an=angle(h); 

 

%% Plotting the Magnitude and Phase Response of the Filter %% 

figure; 

subplot(2,1,1); 

plot(om/pi,m); 

xlabel('(a) Normalized freq. -->'); 

ylabel('Gain in dB-->'); 

title('Magnitude Response of  IIR Digital Filter'); 

subplot(2,1,2); 

plot(om/pi,an); 

xlabel('(b) Normalized freq. -->'); 

ylabel('Phase in radians-->'); 

title('Phase Response of  IIR Digital Filter'); 
 

 

 

 



Input and Output: 

Enter the IIR Digital Filter Design Specifications 

Enter the Pass Band Attenuation in dB 20 

Enter the Stop Band Attenuation in dB 50 

Enter the Pass Band Edge (Digital) Frequency in Hz 400 

Enter the Stop Band Edge (Digital) Frequency in Hz 800 

Enter the Sampling Frequency in Hz 2000 

 

Digital Specifications into radians per second 

wp1 = 0.4000 rad/s  and    ws2 =   0.8000 rad/s 

Analog filter specifications  

w1 = 810.8401  and  w2 = 1.6912e+03 

Order of the filter N  = 5 

Cutoff frequency W = 534.7964 

 

Precautions: 

1. Check out source file is with ‘.m’ extension or not. 

2. The file name should begin with character and should not contain any punctuation marks. 

3. File name should not be any in built in function name or any keyword 

4. Save the .m files preferably in work folder of MATLAB. 

5. Don’t delete built in functions and any file or folder without informing the system  

    administrator or lab In-charge. 

  

Result:  

The Butterworth Digital IIR Low Pass Filters were designed for given specifications using Bilinear 

transformation. 



Design of Digital IIR Chebyshev filter using Bi-linear 

Transformation 

EXPT. NO: 8 

DATE: 
 

Aim: 

To design the Digital IIR Low Pass Filters using bilinear transformation technique for a given 

specification using Butterworth approximation.  

Equipment Required: 

Personal Computer with MATLAB software. 

Theory: 

     IIR filters are of recursive type, where the present output samples depends on the present 

input, past input samples and output samples. 

The IIR digital filters have the transfer function of the form  
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Designing Procedure for IIR Low Pass filter using Chebyshev Approximation 

The Magnitude Square response of Nth order type-I Chebyshev  filter is given by 
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 Where  is a parameter of the filter related to the ripple in the pass band   

 and 
)(xCN is Nth order Chebyshev polynomial and is defined as 
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BandPassxxNxCN  
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 Type –I Chebyshev filters are all pole filters that exhibits equi ripple behaviour in the pass 

band and a monotonic characteristics in the stop band. 

 Type – II Chebyshev filters contains both poles and zeros and exhibits a monotonic 

behaviour in the pass band and equi ripple behaviour in the stop band. 

 The poles of the Chebyshev filters lie on an ellipse. 

 The number of poles are less compared to Butterworth filter for same order, so that less 

number of discrete components are required to construct the filter.  

For a given filter specifications SPSP  ,,, 
      

P  = Pass Band Frequency 

S
= Stop Band Frequency     

P = Pass Band Ripple 

S
 = Stop Band Ripple 

 The order of the filter is determined by using the below equation  and round off to nearest 

integer value. 
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 The minor and major axis values a & b of ellipse are given by 
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 The Poles of the Chebyshev filter is given by 
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 The denominator polynomial D(s) is given by D(s) = (S-SK) 

 The numerator Polynomial N(s) is given by 

(a). For N Odd, substitute S = 0 in the denominator polynomial D(s) and find the the    

numerator N(s) value of the filter transfer function. 

(b). For  N Even, Substitute S = 0 in the denominator polynomial D(s) and divide the  result by 

21    

 Determine the transfer function of H(s) Analog low pass Chebyshev filter   
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 (OR) 

Case(i): if N = Even  
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Case(i): if N = Odd  
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 To get BK values, use 
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Description of basic functions: 

Type I Filter Design 

1. [N, Wp] = cheb1ord(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital 

chebyshev Type-I filter which has a pass band ripple of no more than Rp dB and a stop band 

attenuation of at least Rs dB. Wp and Ws are the pass band and stop band edge frequencies, 

normalized from 0 to 1 (where 1 corresponds to pi radians/sample) and  

[N, Wp] = cheb1ord(Wp, Ws, Rp, Rs, 's') does the computation for an analog filter, in which 

case Wp and Ws are in radians/second. 

2. cheby1 Chebyshev Type-I digital and analog filter design [B,A] = cheby1(N,Wp,Rp) designs 

an Nth order low pass Chebyshev type-I filter and returns the filter coefficients in length N+1 

vectors B (numerator) and A (denominator). The coefficients are listed in descending powers of z. 

The cutoff frequency Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding to 

half the sample rate. 

    [B,A] = cheby1(N,Wp,Rp,'high') designs a high pass filter. 

    [B,A] = cheby1(N,Wp,Rp,'low') designs a low pass filter. 

    [B,A] = vheby1(N,[Wp, Ws], Rp,'bandpass') is a band stop filter  

    [B,A] = cheby1(N,[Wp, Ws],'stop') is a band stop filter  

Type II Filter Design 

3. [N, WS] = cheb2ord(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital 

Chebyshev Type-II filter which has a pass band ripple of no more than Rp dB and a stop band 

attenuation of at least Rs dB. Wp and Ws are the pass band and stop band edge frequencies, 

normalized from 0 to 1 (where 1 corresponds to pi radians/sample) and  

[N, WS] = cheb2ord(Wp, Ws, Rp, Rs, 's') does the computation for an analog filter, in which case 

Wp and Ws are in radians/second. 

4. cheby2 Chebyshev Type-II digital and analog filter design [B,A] = cheby2(N,WS,Rs) designs 

an Nth order low pass Chebyshev type-II filter and returns the filter coefficients in length N+1 

vectors B (numerator) and A (denominator). The coefficients are listed in descending powers of z. 

The cutoff frequency Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding to 

half the sample rate. 

    [B,A] = cheby2(N,Ws,Rs,'high') designs a high pass filter. 

    [B,A] = cheby2(N,Ws,Rs,'low') designs a low pass filter. 

    [B,A] = vheby2(N, Rs, [Wp, Ws], Rp,'bandpass') is a band stop filter  

    [B,A] = cheby2(N, Rs,[Wp, Ws],'stop') is a band stop filter  

5. bilinear Bilinear transformation with optional frequency prewarping  

[NUMd, DENd] = bilinear(NUM,DEN,Fs), where NUM and DEN are row vectors containing 

numerator and denominator transfer function coefficients, NUM(s)/DEN(s), in descending powers 

of s, transforms to z-transform coefficients NUMd(z)/DENd(z) 

Procedure: 

1. Open the MATLAB software by double clicking the icon on desktop. 

2. Open the new M-file by using file menu. 

3. Write the program in new file. 

4. Click on save and run the icon. 

5. Perform error check which displayed on command window. 

6. Plot the waveforms displayed on figure window. 

7.  Note down the values, which are displayed on the command window. 

 

 

 

 



Program: 

% Experiment 8: Design of Digital IIR Low Pass filter using Chebyshev (Type-I) 

Approximation and Bi-linear Transformation 

%% Design of Digital IIR filter using Bilinear Transformation %%  

clc;  

clear all;  

close all;  
 

%% Read the Digital Filter Specifications %% 

disp('Enter the IIR Digital Filter Design Specifications'); 

Ap = input('Enter the Pass Band Attenuation in dB'); 

As = input('Enter the Stop Band Attenuation in dB'); 

wp = input('Enter the Pass Band Edge (Digital) Frequency in Hz'); 

ws = input('Enter the Stop Band Edge (Digital) Frequency in Hz'); 

fs = input('Enter the Sampling Frequency in Hz'); 
 

 

%% Conversion of Digital Specifications into radians per second %%  
 

wp1 = 2*wp/fs  % Pass Band Frequency in terms of radians per second 

ws2 = 2*ws/fs  % Stop Band Frequency in terms of radians per second 
 

%% Conversion of Digital Specifications into Analog Specifications using Bilinear 

Transformation %%  

w1 = 2*fs*tan(wp1/2) 

w2 = 2*fs*tan(ws2/2) 
 

%% Compute the Order, Cutoff frequency and Analog filter coefficients using Chebyshev-I 

Approximation %% 

[N,W] = cheb1ord(w1,w2,Ap,As,'s') 
 

c = input('Enter the Choice of Analog Filter 1. LPF 2. HPF 3.BPF 4.BSF \n '); 

%% Determine the Filter Coefficients %% 

if(c==1) 

disp('Frequency Response of  IIR LPF is:'); 

[nums,dens]=cheby1(N,W,'low','s') 

end 

if(c==2) 

disp('Frequency Response of  IIR HPF is:'); 

[nums,dens]=cheby1(N,W,'high','s') 

end 

if(c==3) 

    disp('Frequency Response of  IIR BPF is:'); 

[nums,dens]=cheby1(N,[w1,w2],'bandpass','s') 

end 

if(c==4) 

    disp('Frequency Response of  IIR BSF is:'); 

[nums,dens]=cheby1(N,[w1,w2],'stop','s') 

end 

 

%% Analog IIR filter transfer function (H(s)) converted to Digital IIR Filter transfer 

function (H(z)) using Bilinear Transformation %% 

 

[numd  dend]=bilinear(nums, dens, fs); 

 

 



%% Obtaining the Magnitude and Phase Response of filter %% 

w = 0:0.1:pi; 

[h,om] = freqz(numd,dend,w); 

 

%% Obtaining the Magnitude Response of filter %% 

m=20*log10(abs(h)); 

%% Obtaining the Phase Response of filter %% 

an=angle(h); 

 

%% Plotting the Magnitude and Phase Response of the Filter %% 

figure; 

subplot(2,1,1); 

plot(om/pi,m); 

xlabel('(a) Normalized freq. -->'); 

ylabel('Gain in dB-->'); 

title('Magnitude Response of  IIR Digital Filter'); 

subplot(2,1,2); 

plot(om/pi,an); 

xlabel('(b) Normalized freq. -->'); 

ylabel('Phase in radians-->'); 

title('Phase Response of  IIR Digital Filter'); 
 

Input and Output: 

Enter the IIR Digital Filter Design Specifications 

Enter the Pass Band Attenuation in dB 20 

Enter the Stop Band Attenuation in dB 50 

Enter the Pass Band Edge (Digital) Frequency in Hz 400 

Enter the Stop Band Edge (Digital) Frequency in Hz 800 

Enter the Sampling Frequency in Hz 2000 

Digital Specifications into radians per second 

wp1 = 0.4000 rad/s  and    ws2 =   0.8000 rad/s 

Analog filter specifications  

w1 = 810.8401  and  w2 = 1.6912e+03 

Order of the filter N  = 4 

Cutoff frequency W = 534.7964 

Precautions: 

1. Check out source file is with ‘.m’ extension or not. 

2. The file name should begin with character and should not contain any punctuation marks. 

3. File name should not be any in built in function name or any keyword 

4. Save the .m files preferably in work folder of MATLAB. 

5. Don’t delete built in functions and any file or folder without informing the system  

    administrator or lab In-charge. 

  

Result:  

The Chebyshe-I approximation of Digital IIR Low Pass Filters were designed for given 

specifications using Bilinear transformation. 



11. Design of Digital FIR Filters  

(LPF, HPF, BPF AND BSF)  

EXPT. NO: 11 

DATE: 
 

Aim: 

To design the Digital FIR Low Pass Filters using rectangular window technique for a given 

specification.  

Equipment Required: 

Personal Computer with MATLAB software. 

Theory: 

     FIR filters are of recursive type, where the present output samples depends on the 

present input, past input samples. 

The FIR digital filters have the transfer function of the form  
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Designing Procedure for FIR filter using window technique  

 Choose the desired frequency response Hd(e
jw) 

 Apply Inverse DTFT to obtain the impulse response of the desired FIR filter 
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 Choose the window sequence w(n) and multiply with hd(n), to obtain the impulse response of 

the FIR filter h(n) 
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 Determine the transfer function of FIR filter by applying the Z-Transforms 
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 Realize the Transfer function H(z) using Direct Form or Cascaded form or Linear Phase 

Realization. 

 Determine the frequency response of FIR filter  
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Description of basic functions: 

1. disp(X) displays the array, without printing the array name 

2. xlabel('text') adds text beside the X-axis on the current axis. 

3. ylabel('text') adds text beside the Y-axis on the current axis. 

4. title('text') adds text at the top of the current axis. 

5.Discrete sequence or "stem" plot. stem(Y) plots the data sequence Y as stems from the x axis 

terminated with circles for the data value. 

6. subplot Create axes in tiled positions. H = subplot(m,n,p), or subplot(mnp), breaks the Figure 

window into an m-by-n matrix of small axes, selects the p-th axes for the current plot, and returns 

the axes handle.  

7. abs(X) is the absolute value of the elements of X. 

 

 



8. (a) W = rectwin(N) returns the N-point rectangular window. 

    (b). W = triang(N) returns the N-point triangular window. 

    (c). W = hanning(N) returns the N-point symmetric Hanning window 

    (d). W = hamming(N) returns the N-point symmetric Hamming window 

    (e). W = kaiser(N) returns an N-point Kaiser window 

9. fir1   FIR filter design using the window method. 

    B = fir1(N,Wn) designs an N'th order lowpass FIR digital filter and returns the filter 

coefficients in length N+1 vector B. The cut-off frequency Wn must be between 0 < Wn < 1.0 

B = fir1(N,Wn,'high') designs an N'th order high pass filter. 

B = fir1(n,[w1,w2],'bandpass',window) designs a Bandpass filter 
B = fir1(n,[w1,w2],'stop',window) designs a Band stop filter 
10. freqz Frequency response of digital filter 

    [H,W] = freqz(B,A,N) returns the N-point complex frequency response 

    vector H and the N-point frequency vector W in radians/sample of 

    the filter and given numerator and denominator coefficients in vectors B and A.  

11. angle(H) returns the phase angles, in radians, of a matrix with complex elements. 

 

Procedure: 

1. Open the MATLAB software by double clicking the icon on desktop. 

2. Open the new M-file by using file menu. 

3. Write the program in new file. 

4. Click on save and run the icon. 

5. Perform error check which displayed on command window. 

6. Plot the waveforms displayed on figure window. 

7.  Note down the values, which are displayed on the command window. 

 

Program: 

% Experiment 11: Design of Digital FIR filter using window techniques (Rectangular 

Window) 

% Design of Digital FIR filters using Rectangular Window Method 

clc;  

clear all;  

close all;  

warning off; 

disp('Enter the FIR filter Design Specifications'); 

  

%% Read the Filter Specifications %% 

n = input('Enter the order or no of samples');  

wp = input('Enter the Pass Band Edge Frequency');  

ws = input('Enter the Stop Band Edge Frequency'); 

fs = input('Enter the Sampling Frequency'); 

w1 = 2*wp/fs    % Pass Band Edge Frequency in terms of radians per second 

w2 = 2*ws/fs    % Stop Band Edge Frequency in terms of radians per second 

%% Window Function Definition %% 

window = rectwin(n+1); 

c=input('Enter the Choice of Digital FIR Filter 1. LPF 2. HPF 3.BPF  4.BSF  \n '); 

%% Determine the Filter Coefficients %% 

if(c==1) 

disp('Frequency Response of  FIR LPF is:'); 

b = fir1(n,w1,'low',window); 



end 

if(c==2) 

disp('Frequency Response of  FIR HPF is:'); 

b = fir1(n,w1,'high',window); 

end 

if(c==3) 

disp('Frequency Response of  FIR BPF is:'); 

b = fir1(n,[w1,w2],'bandpass',window); 

end 

if(c==4) 

disp('Frequency Response of  FIR BSF is:'); 

b = fir1(n,[w1,w2],'stop',window); 

end 

  

%% Obtaining the Magnitude and Phase Response of filter %% 

w = 0:0.01:pi; 

[h,om]=freqz(b,1,w); 

 

%% Obtaining the Magnitude Response of filter %% 

m = 20*log10(abs(h)); 

   

%% Obtaining the Phase Response of filter %% 

an = angle(h); 

 figure; 

subplot(2,1,1); 

plot(om/pi,m); 

xlabel('(a) Normalized Frequency -->'); 

ylabel('Gain in dB-->'); 

title('Magnitude Response of  FIR filter'); 

subplot(2,1,2); 

plot(om/pi,an); 

xlabel('(b) Normalized Frequency -->'); 

ylabel('Phase in Radians-->'); 

title('Phase Response of  FIR filter'); 

 

Input and Output: 

Enter the FIR Digital Filter Design Specifications 

Enter the order or no of samples 20 

Enter the Pass Band Edge Frequency 100 

Enter the Stop Band Edge Frequency 200 

Enter the Sampling Frequency 1000 

w1 =  0.2000 rad /sec   

w2 = 0.4000 rad /sec 

Enter the Choice of Digital FIR Filter 1. LPF 2. HPF 3.BPF  4.BSF             1 

Frequency Response of  FIR LPF is:  



-0.0000   -0.0229   -0.0418   -0.0477   -0.0344    0.0000    0.0516    0.1114    0.1670    0.2065    

0.2207     0.2065    0.1670      0.1114    0.0516    0.0000   -0.0344   -0.0477   -0.0418   -0.0229    

-0.0000 

 

Precautions: 

1. Check out source file is with ‘.m’ extension or not. 
2. The file name should begin with character and should not contain any punctuation marks. 
3. File name should not be any in built in function name or any keyword 
4. Save the .m files preferably in work folder of MATLAB. 
5. Don’t delete built in functions and any file or folder without informing the system  
    administrator or lab In-charge. 
 

 

Viva -Voce Questions: 

1. What are advantages of FIR Filter? 
2. What are different windows for fir filter? 
3. What is the need of usage of windows? 
4. What are different steps required to execute the DSP program in Matlab. 
5. What is the command used for FIR filter implementation. 
6. Write the expressions for Rectangular window, Hanning window, Hamming window, Triangular 
window. 
7. Explain the steps used in design of FIR filter using Fourier series method. 
Result:  

The FIR Filters were designed for given specifications using windows 



Linear Convolution using CCS & DSP Processors  EXPT. NO: 10 

DATE: 
 

Aim: 

To verify the linear convolution between input sequence x(n) and impulse sequence h(n) for a 

given discrete LTI system on TMS320C6748 DSP Processor using Code Composer Studio (CCS). 

Equipment Required: 

1. Personal Computer with CCS software. 

2. TMS320C6748 DSP Processor. 

3. XDS110 USB Debug Probe. 

Theory: 

     Convolution is an important operation in DSP, because convolving two sequences in 

time domain is equivalent to multiplying the sequences in frequency domain. Convolution mainly 

used in processing signals especially analysing the output of a system.   Convolution of two signals  

x(n) and h(n) is given as 
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In practice, we often deal with sequences of finite length, and their convolution may be 

found by several methods. The convolution y(n) of two finite-length sequences x(n) and h(n) is 

also of finite length and is subject to the following rules, which serve as useful consistency  

Procedure for Linear Convolution:  

1. The starting index of y(n) equals the sum of the starting indices of x(n) and h(n). 

2. The ending index of y(n) equals the sum of the ending indices of x(n) and h(n). 

3. The length N of y(n) is related to the lengths N1 and Lh of x(n) and h(n) by 

               N2 = N1+N2 – 1. 

The various steps involved in finding out convolution sum are 

Step 1: Choose the starting time n for evaluating the output sequence y(n). If x(n) starts at 

n = n1 and h(n) starts at n = n2, then n = n1 + n2 is a good choice. 

Step 2: Express both the sequences x(n) and h(n) in terms of the index k. 

Step 3: Fold h(k) about k = 0 to obtain h(– k) and shift by n to the right if n is positive and 

to the left if n is negative to obtain h(n – k). 

Step 4: Multiply the two sequences x(k) and h(n – k) element by element and sum the 

products to get y(n). 

Step 5: Increment the index n, shift the sequence h(n – k) to the right by one sample and 

perform Step 4. 

Step 6: Repeat Step 5 until the sum of products is zero for all remaining values of n. 

Procedure: 

1. Open Code Composer Studio and Click on Launch to open the CCS V8 

2. Click on Project - New CCS Project – Type Project Name. 

3. Select the Target as TMS320C674X floating point and Processor as TMS320C6748 - 

Connections as Texas Instruments XDS110 USB Debug Probe – Compiler version as TI 

v8.2.5 then click on Finish to load the main.c editor window and Project with above 

mentioned project name. 

4. Type the C - Source code in main.c file. 

5. After Creating the Source file then click on the Build to check and verify the errors in the 

Source code. 

6. After Build finished, then click on the Debug and Resume the program main.c to get the 

outputs. 

7. To plot the graph – tools – graph - Single time. 



 

Program: 

/* program to implement linear convolution */ 

#include<stdio.h> 

#include<math.h> 

int y[20]; 

main() 

{  

int m = 6;                                       /*Length of i/p samples sequence*/ 

int n = 6;                                        /*Length of impulse response Co-efficients */ 

int i = 0,j; 

int x[15]={1,2,3,4,5,6,0,0,0,0,0,0}; /*Input Signal Samples*/ 

int h[15]={1,2,3,4,5,6,0,0,0,0,0,0}; /*Impulse Response Coefficients*/ 

for(i=0;i<m+n-1;i++) 

{ 

y[i]=0; 

for(j=0;j<=i;j++) 

y[i]+=x[j]*h[i-j]; 

} 

printf("Linear Convolution\n"); 

for(i=0;i<m+n-1;i++) 

printf("%d\n",y[i]); 

} 

Input and Output: 

Input 

x[15]={1,2,3,4,5,6,0,0,0,0,0,0}     

h[15]={1,2,3,4,5,6,0,0,0,0,0,0}  

Output 

Y[15]={1, 4, 10, 20, 35, 56, 70, 76, 73, 60, 36, 0,  0,  0,  0} 

Graph Properties to display the output graphically  

 

 



 

 

Precautions: 

1. Check out source file is with ‘.c’ extension or not. 

2. The file name should begin with character and should not contain any punctuation marks. 

3. File name should not be any in built in function name or any keyword 

4. Don’t delete built in functions and any file or folder without informing the system  

    administrator or lab In-charge. 

 

Viva -Voce Questions: 

1. What is convolution? 

2. What are the applications of convolution? 

3. What are the various steps involved in finding out convolution? 

4. What is the expression for Linear Convolution? 

5. List the methods involved in finding the linear convolution. 

Result:  

Linear convolution response of discrete LTI system with input sequence x(n) and impulse response 

h(n) was verified on TMS320C6748 DSP Processor using CCS Software. 

 



Circular Convolution using CCS & DSP Processors  EXPT. NO: 10 

DATE: 
 

Aim: 

To verify the circular convolution between x1(n) and x2(n) on TMS320C6748 DSP Processor  

using Code Composer Studio (CCS). 

Equipment Required: 

1. Personal Computer with CCS software. 

2. TMS320C6748 DSP Processor. 

3. XDS110 USB Debug Probe. 

Theory: 

     The circular convolution of two sequences requires that at least one of the two sequences 

should be periodic. If both the sequences are non-periodic, then periodically extend one of the 

sequences and then perform circular convolution. 

 The circular convolution can be performed only if both the sequences consists of the 

 same number of samples. If the sequences have different number of samples, then convert the 

smaller size sequence to the size of larger size sequence by appending zeros. The circular 

convolution produces a sequence whose length is same as that of input sequences. 

 Circular convolution basically involves the same four steps as linear convolution 

     namely folding one sequence, shifting the folded sequence, multiplying the two sequences and 

finally summing the value of the product sequences. 

 The difference between the two is that in circular convolution the folding and shifting (rotating) 

operations are performed in a circular fashion by computing the index of one of the sequences 

by modulo-N operation.  

 In circular convolution, any one of the sequence is folded and rotated without changing the 

result of circular convolution 

Concentric Circle Method 

Let x1(n) and x2(n) be two given sequences.  

The steps followed for circular convolution of x1(n) and x2(n) are 

 Take two concentric circles. Plot N samples of x1(n) on the circumference of the outer circle 

(maintaining equal distance successive points) in anti-clockwise direction. 

 For plotting x2(n), plot N samples of x2(n) in clockwise direction on the inner circle, starting 

sample placed at the same point as 0
th

sample of x1(n). 

 Multiply corresponding samples on the two circles and add them to get output. 

 Rotate the inner circle anti-clockwise with one sample at a time. 

                                          
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Procedure: 

1. Open Code Composer Studio and Click on Launch to open the CCS V8 

2. Click on Project - New CCS Project – Type Project Name. 

3. Select the Target as TMS320C674X floating point and Processor as TMS320C6748 - 

Connections as Texas Instruments XDS110 USB Debug Probe – Compiler version as TI 

v8.2.5 then click on Finish to load the main.c editor window and Project with above 

mentioned project name. 

4. Type the C - Source code in main.c file. 

5. After Creating the Source file then click on the Build to check and verify the errors in the 

Source code. 



6. After Build finished, then click on the Debug and Resume the program main.c to get the 

outputs. 

7. To plot the graph – tools – graph - Single time. 

 

Program: 

/* program to implement Circular Convolution */ 

#include<stdio.h> 

#include<math.h> 

int m,n,x[30],h[30],y[30],i,j,temp[30],k,x2[30],a[30]; 

void main() 

{ 

printf(" enter the length of the first sequence\n"); 

scanf("%d",&m); 

printf(" enter the length of the second sequence\n"); 

scanf("%d",&n); 

printf(" enter the first sequence\n"); 

for(i=0;i<m;i++) 

scanf("%d",&x[i]); 

printf(" enter the second sequence\n"); 

for(j=0;j<n;j++) 

scanf("%d",&h[j]); 

if(m-n!=0)  

/*If length of both sequences are not equal*/ 

{ 

if(m>n)  

/* Pad the smaller sequence with zero*/ 

        { 

for(i=n;i<m;i++) 

h[i]=0; 

            n=m; 

        } 

for(i=m;i<n;i++) 

x[i]=0; 

        m=n; 

} 

y[0]=0; 

a[0]=h[0]; 

for(j=1;j<n;j++)  

/*folding h(n) to h(-n)*/ 

a[j]=h[n-j]; 

/*Circular convolution*/ 

for(i=0;i<n;i++) 

y[0]+=x[i]*a[i]; 

for(k=1;k<n;k++) 

   { 

y[k]=0; 

      /*circular shift*/ 

for(j=1;j<n;j++) 

x2[j]=a[j-1]; 

x2[0]=a[n-1]; 

for(i=0;i<n;i++) 

{ 

a[i]=x2[i]; 

y[k]+=x[i]*x2[i]; 

} 

} 



/*displaying the result*/ 

printf(" the circular convolution is\n"); 

for(i=0;i<n;i++) 

printf("%d \t",y[i]); 

} 

Input and Output: 

Input 
Enter the length of the first sequence 

4 

Enter the length of the second sequence 

4 

Enter the first sequence 

1 2 3 4 

Enter the second sequence 

4 3 2 1 

Output 

24  22  24  30 

Graph Properties to display the output graphically  

 

 

 

 



 

 

Precautions: 

1. Check out source file is with ‘.c’ extension or not. 

2. The file name should begin with character and should not contain any punctuation marks. 

3. File name should not be any in built in function name or any keyword 

4. Don’t delete built in functions and any file or folder without informing the system  

    administrator or lab In-charge. 

 

Viva -Voce Questions: 

1. What is convolution? 

2. What are the applications of convolution? 

3. What are the various steps involved in finding out convolution? 

4. What is the expression for Circular Convolution? 

5. List the methods involved in finding the circular convolution. 

 

Result:  

Circular convolution between x1(n) and x2(n) was verified on TMS320C6748 DSP Processor 

using CCS Software. 

 



Computation of DFT using CCS & DSP Processors  EXPT. NO: 12 

DATE: 
 

Aim: 

To compute N-Point Discrete Fourier Transform for given N-point sequence.  
on TMS320C6748 DSP Processor  using Code Composer Studio (CCS). 

Equipment Required: 

1. Personal Computer with CCS software. 

2. TMS320C6748 DSP Processor. 

3. XDS110 USB Debug Probe. 

Theory: 

 The DTFT of a sequence is periodic and continuous in frequency in the rage from o 
to 2π. There are infinitely many ω in this range. If we use a digital computer to compute N equally 
spaced points over the interval 0 ≤ ω ≤ 2π, then the N-points should be located at  
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These N equally spaced frequency samples of the DTFT are known as DFT of sequence 
and it is denoted by X(k) is 
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Let x(n) is a causal, finite duration sequence containing L samples, then its Fourier 
transform is given by  
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eX  at N equally spaced points over 0 ≤ ω ≤ 2π, we obtain  
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Since time domain aliasing occurs if N ≤  L, we increase the duration of sequence x(n) 
from L to N samples by appending appropriate zeros, which is known as zero padding. 

Since zero valued elements contribute nothing to sum, hence the above equation can be 

written as    10)()(
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 which is called N-point DFT of sequence x(n). 

Since xp(n) is periodic extension of x(n) with period N, it can be expressed in Fourier series 

expansion  10)(
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 is called N –point IDFT. 

Procedure: 

1. Open Code Composer Studio and Click on Launch to open the CCS V8 

2. Click on Project - New CCS Project – Type Project Name. 

3. Select the Target as TMS320C674X floating point and Processor as TMS320C6748 - 

Connections as Texas Instruments XDS110 USB Debug Probe – Compiler version as TI 

v8.2.5 then click on Finish to load the main.c editor window and Project with above 

mentioned project name. 

4. Type the C - Source code in main.c file. 

5. After Creating the Source file then click on the Build to check and verify the errors in the 

Source code. 

6. After Build finished, then click on the Debug and Resume the program main.c to get the 

outputs. 

7. To plot the graph – tools – graph - Single time. 



 

Program: 

#include<stdio.h> 

#include<math.h> 

void main() 

{ 

short N = 8; 

short x[8] = {1,2,3,4,5,6,7,0}; // test data 

float pi = 3.1416; 

float sumRe = 0, sumIm = 0; // init real/imag components 

float cosine = 0, sine = 0; // Initialise cosine/sine components 

// Output Real and Imaginary components 

floatout_real[8] = {0.0}, out_imag[8] = {0.0}; 

int n = 0, k = 0; 

for(k=0 ; k<N ; k++) 

{ 

sumRe = 0; 

sumIm = 0; 

for (n=0; n<N ; n++) 

{ 

cosine = cos(2*pi*k*n/N); 

sine = sin(2*pi*k*n/N); 

sumRe = sumRe + x[n] * cosine; 

sumIm = sumIm - x[n] * sine; 

} 

out_real[k] = sumRe; 

out_imag[k] = sumIm; 

printf("[%d] %7.3f %7.3f \n", k, out_real[k], out_imag[k]); 

} 

} 

Input and Output: 

Input 
N=8 

X[8]= {1,2,3,4,5,6,7,0} 

Output 

Out_real      Out_imag 

[0]  28.000      0.000  

[1]  -9.657       4.000  

[2]  -4.000      -4.000  

[3]   1.657      -4.000  

[4]   4.000      -0.000  

[5]   1.657       4.000  

[6]  -4.000       4.000  

[7]  -9.657      -3.999  

 

 

 



Graph Properties to display the output graphically  

 

 

Graph of DFT Real Part: 

 

Graph of DFT Imaginary Part: 

 

 



 

Precautions: 

1. Check out source file is with ‘.c’ extension or not. 
2. The file name should begin with character and should not contain any punctuation marks. 
3. File name should not be any in built in function name or any keyword 
4. Don’t delete built in functions and any file or folder without informing the system  
    administrator or lab In-charge. 
 

Viva -Voce Questions: 

1. Write the expressions for N –Point DFT. 

2. Differentiate between DTFT and DFT.  

3. What are the advantages to use DFT in computers rather than DTFT? 

4. State any two DFT properties. 

 
Result:  

The N-Point DFT of the given sequence was computed on TMS320C6748 DSP Processor using 

CCS Software. 
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